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Total green leaf area (GLA) is an important trait for agronomic studies. However, existing
methods for estimating the GLA of individual rice plants are destructive and labor-intensive. A
nondestructive method for estimating the total GLA of individual rice plants based on multi-
angle color images is presented. Using projected areas of the plant in images, linear, quadratic,
exponential and power regression models for estimating total GLA were evaluated. Tests
demonstrated that the side-view projected area had a stronger relationship with the actual total
leaf area than the top-projected area. And power models ¯t better than other models. In addition,
the use of multiple side-view images was an e±cient method for reducing the estimation error.
The inclusion of the top-view projected area as a second predictor provided only a slight
improvement of the total leaf area estimation. When the projected areas from multi-angle images
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were used, the estimated leaf area (ELA) using the power model and the actual leaf area had a
high correlation coe±cient (R2 > 0:98), and the mean absolute percentage error (MAPE) was
about 6%. The method was capable of estimating the total leaf area in a nondestructive, accurate
and e±cient manner, and it may be used for monitoring rice plant growth.

Keywords: Agri-photonics; image processing; plant phenotyping; regression model; visible light
imaging.

1. Introduction

Rice is a staple food for approximately half the
world's population and is one of the most widely
grown crops.1 Since rice yield is important to crop
production, exploring for methods to increase the
rice yield has always been a hot topic in research.2–4

Green leaf area (GLA) is closely related to plant
growth, light interception, photosynthetic e±-
ciency, evapotranspiration and response to fertili-
zers and irrigation,5 which basically determines the
rice yield and quality.6,7 Therefore, it is a key par-
ameter that needs to be accurately measured.

GLA can be obtained via the gravimetric tech-
nique after harvesting the leaves. The gravimetric
technique is based on the leaf mass per area (LMA)
determined from a sub sample, and the total leaf
area is calculated based on the sub sample LMA
and the dry weight of all leaves.8 Commercialized
scanning planimeters, such as LI-3100 (LI-COR
Biosciences, NE, USA), can make rapid GLA
measurements for individual plants in an automatic
but destructive manner. These destructive methods
are accurate but labor-intensive. For nondestructive
GLA estimation, special instruments have been
developed. Plant canopy analyzers, such as LAI-
2000 (LI-COR, Inc., Nebraska, USA) and the Delta-
T Devices SunScan (Delta-T Devices, Cambridge,
UK), are used for estimating leaf area index of ¯eld-
grown rice plants. However, these instruments are
not suitable for GLA estimation of individual
plants. Portable scanning planimeters that support
in vivoGLA assessment of individual plants, such as
CI-202 (CID Inc., NW Camas, WA, USA), could be
labor-intensive and time-consuming when measur-
ing large quantities of leaves. Therefore, a non-
destructive and high-throughput method for GLA
estimation of rice is needed.

Optical and photonics technologies have been
important tools in agriculture area,9 and have been
widely used for inspection and grading of agri-
cultural and food products,10 quality evaluation of
fruit11 and plant growth measurement.12–15 The

visible light imaging technique has been widely used
as a nondestructive method for GLA estimation.
Baker et al.16 showed that the total leaf area of a
whole tree plant can be calculated from image-based
areas. Leroy et al.17 obtained single leaf measure-
ments from digital pictures and reported relation-
ships between various leaf measurements relative to
the actual leaf area. Rajendran et al.18 found a
strong linear relationship between the total leaf area
of individual wheat plants and the sum of the pro-
jected area in three orthogonal images. Marcon
et al.19 proposed two models for total leaf area
estimations of co®ee plants using the width and the
height of tree canopies obtained from images as well
as the total leaf area visible on the images. Nagel
et al.20 also found a strong linear relationship
between the total leaf area and the sum of two side-
views at a 90� horizontal rotation for maize and
barley plants. Pereyra-Irujo et al.21 used a power
function to describe the relationship between the
total leaf area of individual soybean plants and the
projected shoot area, which was calculated by
summing one top-view projected leaf area and one
side-view projected area from the images of the
plants. However, nondestructive approaches are yet
to be employed in estimating the GLA for individ-
ual rice plant.

Previously, our group developed an automated
high-throughput system for measuring rice tillers
(H-SMART22). In this study, the visible light ima-
ging system was incorporated into the H-SMART
for rice image acquisition. In this paper, we present
and validate a nondestructive method for estimat-
ing the total GLA of individual rice plants using
multi-angle color images. The visible light imaging
system was incorporated into the H-SMART for
rice image acquisition. And the GLA was estimated
through a modeling approach using projected areas
of the plant in images. The objectives of this paper
were: (i) to adapt the image-based method for
estimating the GLA of individual rice plants; (ii) to
propose a model using projected area for calculating
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the GLA; and (iii) to evaluate the accuracy
improvement of GLA estimation by using multi-
angle color images.

2. Materials and Methods

2.1. Sample preparation and the
destructive method

A total of 235 rice plants were used to develop and
validate the models. The species of plants were
Liangyoupeijiu and Peiliangyou 3076. All of the
samples were imaged before the leaves were har-
vested. In this study, a commercial scanner (BenQ
8800, BenQ Corporation, China) was used to obtain
the actual leaf area measurement. The destructive
method was similar to that of Caldas et al.23 Leaves
were clipped and pasted °at on white sheets of paper,
after which the papers were placed in the scanner.
The scan was performed with 300 dpi, and the ima-
ges were saved as 8-bit grayscale images. Using a
¯xed grayscale threshold, leaves in the saved images
were discriminated from the background. Based on
the foreground pixel counts of all leaves that belon-
ged to the same plant, the total leaf area for indi-
vidual rice plant was obtained. The experiment was
performed during the tillering stage. The minimum
and maximum leaf area measurements were 30.34
and 1741.51 cm2, respectively.

2.2. Digital image acquisition

When incorporated with visible light imaging sys-
tem, the H-SMART was able to e®ectively acquire
rice images. Figure 1 shows a schematic of the
imaging system, which consisted of a side-view
color camera (Stingray F-504C, Allied Vision

Technologies, Germany), a top-view color camera
(DH-SV1410, Daheng Group Inc., China), a rotat-
ing platform, a servo motor controller (MBDDT-
2210, Panasonic Corporation, China), a computer
workstation (HP xw6400, Hewlett-Packard Devel-
opment Company, USA) and light sources. Both
cameras were equipped with an 8mm focal length
(fÞ lens (F1.8 EX DG Aspherical Macro, SIGMA,
Japan), and the axes of the two cameras were
oriented orthogonal to each other. The side-view
camera was mounted rigidly with the viewing plane
perpendicular to the ground plane at a distance of
1700mm from the plant, and the top-view camera
was mounted on a top plane at a distance of
1700mm above the plant. To improve the image
quality, a dark blue backdrop was used to provide a
consistent background behind the plant. In ad-
dition, to prevent strong shadows, two light
sources were ¯xed to the left and right of the plant
respectively, and two light sources were ¯xed on
the top plane. The cell size of the top-view camera
was 6.45�m� 6:45�m, and the picture size was
1392� 1040 pixels. The cell size of the side-view
camera was 3.5�m� 3:5�m, and the picture size
was 2452� 2056 pixels. Therefore, the ¯eld of
view for the top-view camera was approximately
1908mm� 1425mm (length � width), and the ¯eld
of view for the side-view camera was approximately
1824mm� 1529mm (height � width). A total of
12 side-view images (angle-interval of 30�) were
acquired as the potted rice plant was continuously
rotated, and one top-view image was taken.

2.3. Image processing

The image processing procedure is illustrated in
Fig. 2. Figure 2(a) presents a color plant image from
the side view. To enhance the plant region extrac-
tion, the image was transformed to an excessive
green (E �G) image [Fig. 2(b)] and an excessive
red (E �R) image [Fig. 2(c)] using24:

E �G ¼ 2g� r� b; ð1Þ
E �R ¼ 1:4r� b: ð2Þ

The variables r, g and b are the normalized color
features calculated according to:

r ¼ R=ðRþGþBÞ; ð3Þ
g ¼ G=ðRþGþBÞ; ð4Þ
b ¼ B=ðRþGþBÞ; ð5ÞFig. 1. Schematic drawing of the imaging system.
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where R, G and B are the grayscale values for each
RGB channel.

A ¯xed threshold was applied to the E �G
image to identify bright objects, and a ¯xed
threshold was applied to the E �R image to
identify dark objects. By applying an AND oper-
ation to the two binary image, the plant region was
extracted, and the soil in the pot was not dis-
criminated as plant [Fig. 2(d)]. Due to the presence
of undesirable spots in the binary image, a proces-
sing step was employed to remove small areas, and

regions with areas smaller than a prede¯ned
threshold were eliminated [Fig. 2(e)].

All of the 12 side-view images and one top-view
image were processed in the same way. The pro-
jected areas of the plant in multiple views were
calculated by counting the number of pixels that
belonged to the plant region in each image.

2.4. Model development and validation

A total of 135 pots of the samples were randomly
selected for model development, and the remaining
100 samples were used as test samples for model
validation. Using projected areas of the plant in
images, linear, quadratic, exponential and power
regression models for estimating total GLA were
developed based on regression analyses. For each
model, the following statistics for assessing the
goodness of ¯t were calculated:

(1) Coe±cient of determination value (R2): a
measure of how well the model represented the
data.

(2) t-test value and its signi¯cance: tests of indi-
vidual independent variables indicated the
statistical signi¯cance of respective independent
variable.

(3) Mean absolute percentage error (MAPE): a
measure of accuracy, which was given as fol-
lows:

MAPE ¼ 1

n

Xn
i¼1

jELAi �GLAij
GLAi

� 100%; ð6Þ

where ELAi is the estimated leaf area using a
model for the ith sample, and n is the number of
plant samples.

(4) Root mean square error (RMSE): a measure of
error variance, which was given as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðELAi �GLAiÞ2
s

: ð7Þ

To assess the predictive performance of the
models and test their ability to generalize, the test
samples were used for model validation. The ELAs,
which were determined using the models, were
compared with the actual leaf area, and leave-one-
out cross validation using the 235 samples was
applied. The R2, MAPE and RMSE values of
calibration, prediction and cross validation (R2

c ,
R2

p, R
2
cv, MAPEC, MAPEP, MAPECV, RMSEC,

Fig. 2. Outline of the side-view image processing procedure.
(a) The original image; (b) the E �G image; (c) the E �R
image; (d) the binary image; and (e) the result of removing
small particles.
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RMSEP and RMSECV), were calculated. Based on
these analysis results, the best model was selected.

3. Results

3.1. Performance of linear
and nonlinear models

A total of 135 pots of rice plants were randomly
selected as calibration samples for model develop-
ment. To determine the best predictor of GLA, the
relationship between the GLA and the top-projected
area (TA) was compared with the relationship
between the GLA and the average projected area of
12 side-view images (SAaveÞ. The scatter plots of TA
vs GLA and SAave vs GLA are shown in Figs. 3(a)
and 3(b), respectively. It can be observed that both
TA and SAave have a close relationship with GLA.
The two plots are similar, although the plot of TA vs
GLA shows a greater dispersion of the data. There-
fore, SAave is the better predictor of GLA.

Using SAave and GLA as independent and
dependent variables, respectively, linear, quadratic,
exponential and power models were developed. The
models are:

Linear : GLA ¼ a0 þ a1 � SAave; ðModel 1Þ

Quadratic : GLA ¼ a0 þ a1 � SAave

þ a2 � SA2
ave; ðModel 2Þ

Exponential : GLA ¼ a0 � ea1�SAave ; ðModel 3Þ

Power: lnðGLAÞ ¼ a0 þ a1 � lnðSAaveÞ;
ðModel 4Þ

where a0, a1 and a2 are the coe±cients.
To compare with the four models ¯tted to SAave

vs GLA, the image-based leaf sum (IBLS) model of
Rajendran et al.18 was also developed using the
calibration samples.

IBLS: GLA ¼ a0 þ a1 �Asum; ðModel 5Þ
where Asum is the sum of the projected area from the
top-view image and two orthogonal side-view
images.

Table 1 presents the regression coe±cients and
statistical parameters for the ¯ve models described
above. Figure 4 shows the relationship between the
ELA using regression models and SAave or Asum, as
well as the dispersion pattern of the residuals for the
respective models. As can be seen from Table 1, all
of the models showed high R2

c values, and the
coe±cients were signi¯cant. For all of the models,
the correlation R2

p exceeded 0.87, and the accuracy
on the test samples was slightly less than that on
the calibration samples, and the estimation error
predicted by the cross validation gave similar
results to the error on the calibration samples. The
results showed that the ¯ve models did not over¯t
the calibration samples and had good ability to
generalize.

In the ¯ve developed models, the exponential
model had the worst precision. The scatter plot of
the residual of the exponential model had a het-
eroscedastic behavior, and the estimation error was
large when the plants were large [Fig. 4(h)]. The
MAPEC values of Model 1, Model 2 and Model 5
were less than 10%, although their bias led to an

underestimation for small samples [Figs. 4(f), 4(g)

and 4(j)]. Compared with other models, the power

(a)

(b)

Fig. 3. Scatter plots of projected areas vs the actual total
GLA. (a) top-view projected area (TA) vs GLA; (b) average
side-view projected area (SAave) vs GLA.
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model gave the best performance and had the

highest R2 value, and highest accuracy (Table 1); in

addition, the residuals were close to a normal dis-

tribution. Model 1 and Model 5, where the re-

lationship between the variables was linear,

behaved similarly for GLA estimation. The non-

linear models, with the exception of the exponential

model, ¯t the GLA better than the linear models.

3.2. Performance of the models using
various numbers of side-view

images

A greater number of side views would obviously
have more information about the plant archi-
tecture. For example, additional hidden leaves can
be observed when using multiple views. The pro-
jected areas of 10 randomly selected samples in each

(a) (f)

(b) (g)

(c) (h)

Fig. 4. Performance of the linear and nonlinear models. The relationships between the ELA and the average side-view projected
area for modeling samples using the (a) linear model, (b) quadratic model, (c) exponential model, (d) power model and (e) IBLS
model are shown in the left panel. The dispersion pattern of the residual for the respective (f) linear model, (g) quadratic model, (h)
exponential model, (i) power model and (j) IBLS model are shown in the right panel.
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side-view image are shown in Fig. 5, where the
curves of the projected area °uctuate, and the scale
of this °uctuation varies among di®erent plants.
Since di®erent overlapping leaves were discerned in
multi-side-view images, the projected area varied in
di®erent side views. To determine the appropriate
number of side views, power models that use the

average projected area from di®erent numbers of
side-view images for the same 135 samples were
developed and evaluated:

lnðGLAÞ ¼ a0 þ a1 � lnðSA1Þ; ðModel 6Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA2Þ; ðModel 7Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA4Þ; ðModel 8Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA6Þ; ðModel 9Þ

where SA1 is the projected area from a single image
with an angle of 0; SA2 is the average projected area
from two images with angles of 0 and 90; SA4 is the
average projected area from four images with angles
of 0, 90, 180 and 270; and SA6 is the average pro-
jected area from six images with angles of 0, 60, 120,
180, 240 and 300.

Table 2 shows the results for the four power
models. For all of the models, the ELA had a strong
relationship with the actual leaf area. Comparing
the predicted accuracy of the models, Model 6,
which used a single side-view image, had the highest
MAPEP value with 10.23%. In comparison, for
Model 7, the MAPEP decreased by 4.12% points to

(d) (i)

(e) (j)

Fig. 4. (Continued)

Fig. 5. The curves of the projected areas in each side-view
image for 10 randomly selected samples.
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6.11%. In addition, the use of Model 8 or Model 9
further reduced the MAPEP to 5.99% and 5.87%,
respectively. The same trend was observed in the
RMSE values. Model 6 had the highest RMSE
value, and the RMSE value dropped as the number
of side-view images increased. These results showed
that the use of multi-angle images was e±cient in
reducing the estimation error, which was expected
because the rice plants were not radially sym-
metrical with a straight axis of symmetry, resulting
that a small number of views did not adequately
represent the overall architecture of a plant. By
comparison, Model 4 showed only a slight reduction
in the MAPE and RMSE values relative to Model 8
and Model 9. Therefore, using more than four
side-view images would give only marginal
improvement.

3.3. Performance of the models with and
without the top-view projected area

The use of a top-view image allowed for the cor-
rection of the leaf area estimation for the overlap-
ping leaves in side-view images.15 Therefore, the
value of the top-view image for leaf area estimation
was tested in the models. The models were extended
as follows:

lnðGLAÞ ¼ a0 þ a1 � lnðSA1 þ TAÞ; ðModel 10Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA1Þ þ a2 � lnðTAÞ;

ðModel 11Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA2Þ þ a2 � lnðTAÞ;

ðModel 12Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA4Þ þ a2 � lnðTAÞ;

ðModel 13Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSA6Þ þ a2 � lnðTAÞ;

ðModel 14Þ
lnðGLAÞ ¼ a0 þ a1 � lnðSAaveÞ þ a2 � lnðTAÞ:

ðModel 15Þ

The parameters of the models and the error
measures are listed in Table 3. The addition of the
top-view image yielded better results than the use of
the corresponding side-view images alone, which
indicated that the top-view images was useful
for correcting the estimates. In addition, Model 11

performed better than Model 10, which showed that
adding TA as a separate predictor achieved greater
improvement than incorporating it into the term
(SAþ TA). The MAPEP value decreased by 1.85%
points, to 8.38%, when using Model 11 instead of
Model 6, whereas the MAPEP value decreased only
0.32% points when using Model 15 instead of Model
4. These results indicated that the improvement
diminished as the number of side-view images
increased, and the comparison of RMSE values for
these models also indicated that adding the top-
view image did not signi¯cantly improve the per-
formance of models, when using multi-side-view
images.

4. Discussion

A nondestructive method for estimating the total
GLA of individual rice plants was presented. Images
of rice plants can be e®ectively acquired using the
visible light imaging system, which was incorporated
into the H-SMART system. For many plant species,
total leaf area or biomass can be estimated simply
based on the projected area in the image.14,15,18–21 In
this paper, it is demonstrated that the GLA of
individual rice plants also had a strong relationship
with the plant area in the image, and the side-view
projected area had a stronger relationship with the
actual total leaf area than the TA.

Among the models mentioned above, the power
models performed better than linear models, such as
Model 1 and the IBLS model (Model 5). Model 6,
which used only one side-view image, had accuracy
similar to that obtained by the IBLS model, and the
estimation error for Model 12, which also used three
orthogonal images, was much less than that for the
IBLS model. As shown in Tables 1 and 2, the
coe±cients a1 and a2 in the quadratic model were
positive, and the coe±cient a1 in each power model
was greater than 1. It can be inferred that GLA
might have been allometrically scaled in terms of
the projected area in the image. This scaling occurs
because, the leaf overlapping becomes more exten-
sive as the plant grew larger, resulting in an increase
in the proportion of occluded leaves in the side-view
images.

For each rice plant, 12 side-view images and one
top-view image were taken. By comparing the per-
formance of the models using various numbers of
side-view images, it was found that the accuracy of
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the GLA estimation was increased as the number of
side-view images increased. The reason was that
rice plants lacked inherent asymmetry, resulting in
varied projected area in di®erent view angles. To
get the overall representation of plant area, it was
necessary to use many di®erent view images. On the
other hand, top-view image was useful for correct-
ing the leaf occlusion. By comparing the perform-
ance of the models with and without the top-view
projected area, it was found that estimation error
decreased when TA was added. In addition, the
improvement in accuracy was greater when adding
TA as a separate independent variable instead of
using the sum of SA and TA as the independent
variables. This might be caused by the high corre-
lation between TA and SA. However, the
improvement provided by adding TA diminished as
the number of side-view images increased. The
reason was that the rice plants considered in the
studies were erect growth forms and the leaves
were tilted, thus multi-side-view images of the
plant could correct the hidden leaf area and rep-
resent the total leaf area. In addition, the overhead
camera distance should be long enough to avoid a
di®erence in the pixel resolution between the top
leaves and the bottom leaves; i.e., when the plants
were excessively tall, it was di±cult to con¯gure
the image acquisition system. Therefore, when
attempting to estimate leaf area, the need to use a
top-view image should be taken into consideration.
And considering that the image acquisition and
processing time increased according to the number
of the images, the use of four or six side-view images
should be su±cient to estimate the leaf area with
high accuracy.

The power models proposed were able to esti-
mate the GLA of individual rice plants with high R2

and high precision. When using multi-angle color
images, the R2

p exceeded 0.98, and the MAPEP
value was about 6%. The sources of error were
mainly attributed to extensive leaf overlapping,
nonuniform leaf orientation and nonuniform leaf
density. In addition, the inevitable leaf sway during
the rotation of the plant may have resulted in
undesired discrimination of leaves, which also
introduced error into the leaf area estimation.

5. Conclusion

In summary, we presented a nondestructive method
for estimating the total GLA of individual rice

plants. Models for estimating the total leaf area of
rice plants were developed. Based on the projected
area derived from multiple images, the power
models were capable of estimating the total GLA in
a nondestructive, accurate and e±cient manner.
This method allowed time-lapse measurements
during the plant growth period and, thus, the
growth curve of plants could be attained. Using this
method, researchers are able to monitor plant
growth and control growth conditions in a timely
fashion. The models in this study were designed for
two similar rice varieties. In the future, certain key
parameters characterizing di®erent rice phenotypes
will be derived and incorporated in the model, and a
model for various rice cultivars (e.g., rice germplasm
resources) will be developed.
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